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ABSTRACT 
In this paper, we consider potentially hazardous slopes adjacent to railway corridors, which may not be visible from track-
level but could impact the safety and continuity of railway traffic. The study area for this paper, the CN Rail corridor between 
Hope and Yale, British Columbia, comprises a variety of natural slopes which occasionally produce rockfalls. The objective 
of the work is to spatially quantify potential rockfall source zones within the study area. We have found that predictive 
statistical analysis of 3D point cloud data generated from aerial platforms is an effective means for identifying geologic 
features such as rock outcrops and talus deposits. The spatial positioning of such features relative to each other, as well 
as physical characteristics of the features themselves and their surroundings are used to quantify slope-scale susceptibility 
to rockfalls. An inventory of slopes considering the relevant features has been generated and assessed with the ultimate 
goal of commenting on regional rockfall susceptibility. The methodology proposed shows promise as an effective measure 
of regional scale susceptibility to rock slope failure. 
 
RÉSUMÉ 
Dans le présent document, nous considérons les pentes potentiellement dangereuses adjacentes aux corridors 
ferroviaires, qui peuvent ne pas être visibles à partir du niveau de la voie, mais qui pourraient avoir une incidence sur la 
sécurité et la continuité du trafic ferroviaire. La zone d'étude de ce document, le corridor ferroviaire du CN entre Hope et 
Yale, en Colombie-Britannique, comprend une variété de pentes naturelles qui produisent occasionnellement des 
éboulements. L'objectif de ce travail est de quantifier spatialement les zones sources potentielles de roches dans la zone 
d'étude. Nous avons trouvé que l'analyse statistique prédictive des données de nuages de points 3D générés à partir de 
plates-formes aériennes est un moyen efficace pour identifier les caractéristiques géologiques telles que les 
affleurements rocheux et les dépôts de talus. Le positionnement spatial de ces caractéristiques les unes par rapport aux 
autres, ainsi que les caractéristiques physiques des caractéristiques elles-mêmes et de leur environnement, sont utilisés 
pour quantifier la susceptibilité à l'échelle des pentes aux éboulements. Un inventaire des pentes prenant en compte les 
caractéristiques pertinentes a été généré et évalué dans le but ultime de commenter la susceptibilité régionale aux 
éboulements. La méthodologie proposée est prometteuse en tant que mesure efficace de la susceptibilité à l'échelle 
régionale de la rupture de talus rocheux. 
 
1 INTRODUCTION 
 
Rockfall hazards can cause disruption to the consistent 
and safe operation of transportation corridors. Therefore, 
there is interest in identifying, characterizing and 
quantifying such hazards and the risk associated with them 
(Kromer et al, 2017; van Veen et al, 2016). CN Rail uses 
the Railway Hazard Risk Assessment (RHRA) system to 
assess the risk of a derailment due to rockfall for a given 
site (Pritchard et al, 2005). The RHRA relies on qualitative 
and semi-quantitative observations made from track level 
and is designed with cut slopes immediately adjacent to the 
track in mind. However, ground-based assessment is 
insufficient when aiming to assess natural slope conditions, 
as natural slopes are often not visible from track level due 
to steep gradient and/or vegetation. Therefore, there is 
value in utilizing regional-scale remote sensing data to 
identify potential hazards on natural slopes. This output 
can, in turn, be used to plan further studies for 
characterization through more detailed remote sensing 
(e.g. Lato et al, 2015; Abellan et al, 2016; Eitel et al, 2016; 
Jaboyedoff, 2010), instrumentation or field inspection, as 

well as decisions about the need for mitigation of the 
potential hazard.   

In this study, we look at the application of novel 
analytical techniques using ortho-imagery and 3D point 
cloud data collected in the area between Miles 21 and 25 
in the CN Yale subdivision. Image classification is used to 
identify areas of exposed rock; this information is fused 
with airborne LiDAR data, creating a coloured point cloud 
where each point is classified in terms of its terrain type. 
Geometrical assessment as per Loye et al (2009) is used 
to further classify exposed rock as being talus or a potential 
source for rockfall (a cliff). The classified point cloud data 
is then assessed using the logic outlined in Figure 1 to 
qualitatively assess the hazard on a given area of slope.  
The logic, together with automated terrain classification, 
allows for the identification of potential rockfall sources, 
and evidence of rockfall activity, and uses spatial analysis 
to find the relationships between such features.  

A cone extending laterally +/- 20 degrees from the dip 
direction of a given source, referred to as the inferred 
runout cone here, is delineated to bound the extent of the 
downslope analysis—this is based on the findings of 
Agliardi & Crosta (2003), which suggest that the majority of 



 

rockfall runout is contained within this window. Each cone 
terminates when it contacts the element at risk, the railway 
track, in this case. The area within each cone is assessed 
in terms of evidence of rockfall activity (i.e. presence of 
talus deposits) as well as the conditions of the potential 
runout path in terms of slope geometry and vegetation (i.e. 
would a rock have to traverse a gentle, vegetated slope, or 
is there a clear near-vertical path between the source and 
an element at risk).   

Gauthier et al (2017) outline a framework for the study 
of rockfall hazards through remote sensing data collection 
and analysis, shown in Figure 2. The work carried out in 
this study fits into the searching phase of that framework—
here, we’re looking to evaluate slope conditions to identify 
where rockfalls are possible and to identify evidence of 
rockfall activity to identify where they are likely. The ideal 
output of this phase is a reasonable plan to help focus 
further investigation of slopes with higher hazard potential 
through remote sensing.  

It is important to note that we are not quantifying the 
probability of a rockfall occurring, or the probability of a 
rockfall reaching an element at risk, the goal of this 
approach is to prioritize natural slopes based on qualitative 
evidence by determining where rockfalls are both possible 
and likely and guide further investigation through remote 
sensing or other means, based on that prioritization. 
Essentially, the aim is to provide an efficient screening 
process for determining where time and resources will 

most effectively be used with regards to the management 
of rock slope hazards.  

In the proceeding sections, we will outline the 
methodology employed, discuss the results and identify 
potential for continuation and further development of this 
process.  

 
 

 

1.1 Scope 
 
The overarching goal of this study is to generate a logical 
process which allows for the assessment of terrain and 
slope conditions at a regional scale with minimal user 
input—we do so using a combination of conventional GIS 
based tools as well as custom built tools using Python or 
MATLAB. Wherever possible, the tools aim to utilize 3D 
point cloud information as opposed to rasterizing 3D data 
and working in a 2.5D environment.  The reasoning for this 
is twofold. First, the vertical geometry of the area is 
extremely complex, consisting of many cliffs and 
overhanging features which cannot be fully captured in 
2.5D. Second, advances in computational capability have 
made it more practical to deal with the highly dense 3D 
point cloud data over large areas—this is a relatively recent 
development. Therefore, in the interest of progressing the 
state of practice, analysis is carried out in 3D, whenever 
possible. In addition, the proven ability to effectively merge 
datasets at different scales, data density and accuracy, 
and, different vantage points, permits analysis of more 
complex geometry.  
 
2 STUDY AREA 
 
The study area for this paper, outlined in Figure 3, is 
roughly Mile 21 to Mile 25 of the CN Yale subdivision, which 
runs through the Fraser canyon between Yale and Boston 
Bar, British Columbia. The canyon is oriented North/South 
within this reach and is largely characterized by steep 
scarp-like rock slopes, talus deposits and vegetated 
slopes. There is unmistakable evidence of geohazard 
activity in the area such as landslides, rock avalanches, 
rockfall and debris flows.  Steep cliffs, oriented near parallel 

Figure 1: Detailed outline of the logic developed 
and applied in this study.  Broadly, this process can 
be broken up into terrain classification, 
identification of talus immediately downslope of a 
given source and characterization of downslope 
terrain relative to a given source location.  

Figure 2: Rockfall forecasting framework 
taken from Gauthier et al (2017) 



 

to the Fraser and Yale faults, produce talus benches in 
many locations. Rockfall activity in the area is 
predominantly sourced from these features. Vegetation 
acts as an indicator of recent rockfall activity on such 
benches—benches below recently-active slopes consist of 
sparse vegetation, whereas benches below inactive slopes 
are covered in moss, shrubs and sporadic tree growth.  
Figure 4 shows the clear difference between recently active 

and recently dormant talus benches characteristic of the 
region. It is within reason to suggest that this difference in 
the colour signatures of talus deposits could be used to 
further inform decision making based on evidence of 
activity or lack thereof within a talus deposit. This is not to 
say that vegetated talus deposits are not hazardous—
merely that vegetative cover is one potential data input 
which can be used to determine how frequently and 

Figure 3: Plan map of Miles 21 to 25 within the CN Yale Subdivision in Southwestern British Columbia. Above are photos 
of the sites used to test the analysis procedure developed, on the left at Mile 24.5 and on the right Mile 22.5. 



 

recently rockfalls have occurred within a given reach of 
slope.   

Piteau (1977) identified several massive post-glacial 
slide scars in the area between Boston Bar and Yale, 
specifically between Miles 24 and 26, directly adjacent to 
the town of Yale. He also noted that the entire area is 
characterized by a pronounced faulting zone which trends 
roughly parallel to the Fraser River and is marked by an 
abundance of heavily fractured rock along the two 
dominant faults in the area—the Fraser and Yale faults.  
From a geomorphological standpoint, the physiography of 
the Fraser Canyon points to post-glacial landslides as 
being the most influential process in the area. This 
observation is furthered by the prominence of steep rock 

cliffs on the upper reaches of many of the slopes which are 
likely scarps of major slides. Rockfall activity in the area is 

dominated by these features and are thus largely controlled 
by faulting.  
 
3 METHODOLOGY 

 
The methodology employed here is outlined in Figure 1 and 
is described in detail in this section. At a high level, the 
process can be broken up into the following components: 
 

• Identification of evidence of previous rockfall 
or related geohazard activity through literature 
review and field investigation.  

• Terrain classification through statistical analysis 
of imagery and geometrical assessment of 3D 
point cloud data: identifying areas of talus, 
vegetation and outcrop 

• Identification of evidence of rockfall activity by 
assessing whether or not talus exists immediately 
downslope of a given source zone 

• Assessment of potential runout area by 
assessing the proportion of the area belonging to 
each terrain class as well as the slope geometry 
within the area. A qualitative evaluation of the 
slope between a given source and an element at 
risk can be formulated based on the geometry of 
the slope within the inferred-runout cone as well 
as the amount of vegetative cover.  

 
Statistical analysis of the ortho-imagery is used to 

identify terrain material—specifically, the images are 
classified into exposed rock and vegetation—this process, 
developed by Carter et al (2016), uses a maximum 
likelihood classification on the RGB value of each pixel 
within the image to place it into one classification bin or the 
other.  

Convention is to use slope geometry alone to classify 
data into cliffs and talus deposits within 3D data. However, 
adding colour classification to the process allows for a 
more precise identification of relevant geomorphic 
features, and more importantly, eliminates a great deal of 

Figure 4: In the box on the left, a talus deposit which has clearly been recently active as noted by the disturbed surficial 
material. In the box on the right, another deposit immediately adjacent which is covered in vegetative growth, and does not 
contain disturbed terrain, both of which are indications of a lack of recent activity.   

Figure 5: Results of terrain classification using 
colour 



 

false positives prevalent in the conventional approach. The 
classes are then superimposed onto the 3D point cloud 
using a GIS overlay; therefore, each point within the cloud 
includes its 3D location in space as well as a scalar field 
denoting its terrain type identified through image analysis. 
Figure 5 contains the results of this stage of the process for 
the study site at Yale Mile 22—one limitation of the process 
is that the vertical geometry of the slopes within the study 
area are difficult to capture in 2D space, from a downward 
looking point of view. Therefore, many cliffs would go 
unclassified using just this methodology—therefore, each 
geometry from the LiDAR point cloud is used to identify 
cliffs, and the colour analysis is supplementary.  

Once terrain classification is established, further 
classification can be carried out based on geometric 
parameters according to the methods noted above outlined 
in Loye et al (2009), which use slope angle to infer terrain 
type.  Here, the points classified as being exposed rock are 
further classified into talus deposits or potential rockfall 
source zones. The next portion of the process looks at the 
relationship between a given feature and its surroundings. 
This is done using the runout cone described above.  

The first logical step in the process is to look for 
unmistakable evidence that a potential source is actively 
releasing rocks downslope. It is noted by Piteau (1977) that 
active rockfall sources within the region are marked by 
talus benches at their base. Therefore, in this study for a 
given source, immediately adjacent, downslope talus 
deposits are identified. A talus slope that is immediately 
downslope of a given source is defined here as being 
between a given source and the next down-slope cliff in the 
dip direction of the source. Put simply, for a given cliff, is 
there a talus deposit between it and the next downslope 
cliff? This is a binary, yes/no classification, if it’s satisfied, 
the source is flagged as such and the process moves on to 
the next component, which is the downslope 
characterization.  

The runout cone for each source is broken down in 
terms of the proportion of area belonging to each terrain 
classification type (cliffs, talus deposits, vegetation).  The 
average slope angle of vegetated area within a cone is also 
calculated—this provides insight as to how likely a rockfall 
would be to propagate through a given area of vegetation—
here we’re asking, is the vegetated area of low gradient, or 
is it steep and therefore is it likely that a rock will pass 
through the vegetation?  

The next step is to assess the slope geometry between 
the source and the element at risk. This is done by 
assessing the 3D profile of the inferred runout cone to 
determine if the topography of the slope within the 
boundaries of the inferred runout cone is likely to prohibit 
rocks from reaching the element at risk, or if it is entirely 
steep and therefore prone to rockfall events which reach 
the track.   

The process outlined above was built using Python and 
automated wherever possible. The inputs include a 
classified LiDAR pointcloud, input source points (a random 
sample of points belonging to the cliff classification), and 
the runout cones, which are created in ArcGIS. The output 
is a table with a column for each parameter extracted 
throughout the process.  

The process outlined here was applied to the region 
and analyzed in detail for two hand picked sites—one 
above Mile 22.3 and one above Mile 24.5. These slopes 
were selected on the basis that they are both active in 
producing rockfalls, but each has distinctive characteristics 
in terms of vegetative cover, slope geometry and evidence 
of rockfall. The slope at Mile 22.3 is a known hazard and 
has been the location of several notable rockfall events. It 
is very steep, sparsely vegetated and shows obvious signs 
of rockfall activity. Mile 24.5 on the other hand is heavily 
vegetated and has a much gentler slope profile than Mile 
22.3. From a hazard management perspective, Mile 22.3 is 
a slope that should be prioritized ahead of the slope above 
Mile 24.5. 

 
 
 

4 RESULTS 
 
The results of the analysis on the two hand-picked sites are 
summarized in Table 1, and Figure 6 is a spatial 
representation of the results for these sites. As 
hypothesized, the classification of the slope at Mile 22.3 
indicates a slope with a higher probability of rockfall than 
does Mile 24.5. When comparing these two sites, a rail 
operator could clearly see where resources would be used 
most efficiently. However, at a regional scale, this 
conclusion becomes less clear. At this point in the 
research, the priority classification criterion is being 
developed, the prioritization is merely an example of how 
this information can be applied en masse.  

Figure 7 shows the results applied at a regional scale. 
Points are coloured based on specific criteria, which can 
be altered at the discretion of the expert making decisions 
regarding hazard management or monitoring. As an 
example, the criteria chosen at this point in the research 
are as follows. As further analysis of other slopes is 
conducted, the parameter combinations are likely to be 
refined: High Priority: Sources with talus located 
immediately below, >10% talus within runout cone and <60 
vegetative cover within runout cone. Medium Priority: 
Sources with talus located below, <10% talus within runout 
cone and >60% vegetative cover within runout cone, Low 
priority: Sources without talus located below, <10% talus 
within cone and >60% vegetative cover within cone.  

This classification is illustrated in Figure 7. In general, 
the classification seems to be consistent with visual 
interpretation of the imagery. An important thing to note is 
that the criteria which looks at the location of a potential 
rockfall source relative to the runout path of a previous 
failure, included in Figure 1, is not considered here due to 
a lack of such information within the study area. A detailed 
geohazard database which stores the spatial extents of 
rockfall runout paths does not exist.  

Once fully developed and validated, the prioritization 
ratings can be used by operators to determine where they 
need to focus their efforts. A high priority rating indicates 
that a hazard is likely, and that, based on evidence within 
the inferred runout cone, runout is likely to expand beyond 
the talus deposit directly below the source. A medium 
rating indicates that hazards are likely, but that, based on 
the evidence in the inferred runout cone, the majority of 



 

rockfalls are captured by the talus deposit immediately 
below the source. Low priority sources show no indication 
of rockfall immediately below and have a large proportion 
of vegetation within the inferred runout cone.  

 
 

 
5 DISCUSSION 
 
The airborne LiDAR data was classified using statistical 
classification of ortho-imagery and a geometric 
assessment of 3D point cloud data within each 
classification. We then applied the logic outlined in Section 
3 to all cliffs within the study area between Miles 21 and 25 
of the Yale subdivision. The results of the runout cones 
were analyzed in detail and demonstrated the value of a 
qualitative approach to hazard identification using remote 
sensing data.  

Remote Sensing is a useful tool in the identification and 
prioritization of potential hazards on natural rock slopes in 
railway corridors. Novel analytical techniques can be used 

in a logical way to prioritize such hazards. The workflow 
designed for this study can be used to identify areas of 
slope which are likely to benefit from further investigation 
through remote sensing, kinematic assessment and/or 
runout modelling. Moreover, classified inferred runout cone 
can be used to inform modelling parameters, however, 
kinematic assessment of structures would be necessary to 
identify potential failure volumes. This information can be 
used to quantify both the probability of a hazard occurring 
and the vulnerability of the element at risk.  

This work could also be used in combination with the 
ideas proposed in Bonneau and Hutchinson (this 
conference) which involve the detailed characterization of 
debris flow hazards using high density remote sensing. The 
terrain classification and geometrical assessment 
employed here could be used to identify potential debris 
flow hazards and inform the more detailed remote sensing 
data collection required to carry out that type of analysis.  

It would also be plausible to use similar processes to 
identify large isolated blocks within an inferred runout cone 
to account for less frequent, higher magnitude events 

Figure 6: Results of runout cone analysis for slopes at Mile 22.3 and 24.5  



 

which may not be identified using the current system. 
Similarly, the logic could be expanded to include a 
calculation of the capacity of a ditch at the base of an 
inferred runout cone or to identify how much of the track is 
covered by other types of hazard management (eg rock 
sheds, or lock blocks).  

The value of colour in terrain classification of LiDAR 
point clouds is clearly demonstrated here. This could be 
extended to identify the level of vegetative cover present 
for a given talus deposit. This would add one more tangible 
channel of information to be used by experts in determining 

whether or not a given area of slope is of interest from a 
hazard management perspective. Moreover, digging 
deeper into the properties of slope vegetation, namely 
density, would allow for parametrization of this information 
for use in runout modelling, for example Dupire et al (2016) 
look at the protective capabilities of vegetation against 

rockfall. The methodology provided here could be useful 
for deriving inputs to such modelling.  
 
 
 

Figure 7: Preliminary results of the slope prioritization logic at this point in the research. Red points are high 
priority, yellow are medium and green are low priority.  



 

6 CONCLUSIONS 
 
Airborne LiDAR data and airborne imagery can be used as 
inputs into the analytical procedure outlined above, which 
aims to prioritize slopes based on the likelihood of rock 
slope failure. Colour analysis added a useful layer of 
information to add the process developed by Loye et al 
(2009) in order to accurately classify terrain in LiDAR point 
clouds. Spatial analysis is a powerful tool for identifying the 
relationship between a potential rockfall source and it’s 
surroundings; it can be used to identify where a downslope 
talus deposit exists, and whether or not there are any 
potential rock fall sources in between.  The prioritization 
criteria applied here are preliminary, but demonstrate how 
this methodology can be used to inform stakeholders on 
how their time and resources can most effectively be used 
for the management of rockfall hazards.  
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