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Abstract 
 
The basic understanding of geohazards and the ability to deal with the risks involved necessitate increased use of 
probabilistic methods, as they provide a rational framework that account for uncertainties. Probabilistic methods can be 
applied to slope stability evaluation and estimation of the annual probability of slope failure, which are essential elements 
in any geohazard study. This paper reviews the different steps of geohazard assessment, the probabilistic models for 
slope stability evaluation, and methods for estimating the annual probability of slope failure. Furthermore, a consistent 
framework for landslide hazard zonation or mapping is put forward. 
 
Résumé 
 
Afin de bien comprendre l’importance des géohazards et d’améliorer la perception des risques associés, il est 
nécessaire d’utiliser de plus en plus les méthodes probabilistes, car celles-ci offrent un cadre rationnel qui prend en 
compte les incertitudes.  Les méthodes probabilistes pouvent être appliquées à la fois pour evaluer la stabilité des 
pentes et estimer la probabilité annuelle de rupture, deux éléments essentiels à une étude des géohazards.  L’article fait 
une revue des différentes étapes d’une étude des géohazards, des modèles probabilistes pour l’étude de la stabilité des 
pentes et des méthodes pour estimer la probablité annuelle de rupture.  Une méthodologie  pour le zonage des  hazards  
de glissement et pour la cartographie du risque est proposée.
  

  
2. GEOHAZARDS AND THEIR ASSESSMENT 1. INTRODUCTION 
  
Today, society and regulations require that the risk of civil 
engineering structures and infrastructure be quantified. 
Risk cannot be evaluated without involving multi-
disciplinary parameters. In addition, political aspects and 
public opinion need to be considered. Statistics, reliability 
analyses and risk estimates are useful tools that assist 
the decision-making in terms of hazards affecting a 
population.  

The need to improve the basic understanding of 
geohazards and the ability to deal with the risks involved 
necessitate increased use of probabilistic methods, as 
they provide a rational framework that account for 
uncertainties. Application of probabilistic methods to slope 
stability evaluation and estimating the annual probability 
of slope failure are essential elements in most 
geohazards studies. 

  
Geological risks, or "geohazards", are events resulting 
from geological features and processes that present 
severe threats to humans, property and the natural and 
built environment. Landslides caused by heavy rainfall, 
floods, earthquakes, erosion, and human activities are the 
most common geohazards on land. Near-shore and off-
shore, various geological processes, earthquakes and 
human activities, for instance in connection with 
petroleum exploration and production, can also trigger 
slides and large mass flows. 

Establishing a model of the slide frequency (i.e. the 
annual probability of failure) is required in order to perform 
risk evaluation. When the potential triggering source of a 
slide is clearly identified, for example a strong earthquake 
in a seismically active region, then estimating the annual 
probability of slope instability is theoretically straight-
forward. However, when the potential triggering 
mechanism is not obvious and the slope stability 
calculations essentially provide an estimate of failure 
probability for static conditions, then estimating the annual 
failure probability is not straightforward. In this latter 
situation, geological evidence and dating of previous 
slides are the key parameters for estimating the annual 
failure probability. Both situations are addressed here and 
ideas for a consistent framework for hazard zonation 
mapping are put forward. 

 
The urgent need to improve the understanding of 
geohazards and the ability to deal with the risks has 
generated significant research and development activity in 
this field during the past decade. The need is accentuated 
by increased sliding and flooding in many regions, 
increased concern for geohazards in production and 
transport of oil and gas and increased vulnerability to 
earthquakes. Facts supporting this urgency include: 

 
 
 

  
  
  

• The 1999 World Disaster Report estimated that 
in the period 1988-1997 landslides alone caused 
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9,000 deaths and total damages of about USD 
450 million.  

• In 1999, the extreme rainfall in Venezuela 
triggered severe flooding and landslides, and 
alone caused over 20,000 deaths. 

• The largest oil companies define reduction of risk 
due to geohazards in deep water as one of their 
top research priorities. The consequences of 
accidents due to geohazards offshore in terms of 
loss of life and damage to the environment would 
be catastrophic. 

• Tsunamis (large waves formed by rapid mass 
movements) present extreme threats to coastal 
areas. In the 1990s, four tsunamis ravaged 
Nicaragua, Indonesia, Japan, and Papua New 
Guinea causing the loss of 4,000 lives. 

• Recent earthquakes in Turkey (1999), El 
Salvador (2001) and India (2001) caused loss of 
40,000 lives and made many more homeless. 
The large 2001 earthquake in Seattle caused 
much damage but no loss of life, due to 
mitigation efforts in the USA. The Munich Re 
insurance company assess losses for the last 5 
decades to be respectively USD 1, 21, 55, 82, 

 
 

and 219 billion (2000 equivalents). Escalation is 
likely, with incre
vulnerability. 

• In 2001, natural ha
deaths, or twice the 

year 2000. Material damages in 2001 alone 
amount to USD 300 billion according to Munich 
Re. 

 
Climate research indicates that one can expect more 
extreme weather in the next 50 years, leading to 
increased landslide and vulnerability. Predicting the 
hazard posed by geological processes, and evaluating the 
human, environmental and economical consequences of 
geohazards require that the uncertainties in different parts 
of the problem are quantified and addressed properly. An 
integrated scientific approach involving many disciplines 
is required for this purpose.  
 
Figure 1 shows the interdisciplinary nature of a typical 
geohazard study. As seen on the figure, assessment of 
geohazards and their associated risks requires identi-
fication and analysis of the possible failure scenarios 
(failure modes, triggers and related failure consequences) 
that can give a significant contribution to the total risk. 
Furthermore, the annual probability that the potential 
triggering mechanism is strong enough to cause failure 
needs to be evaluated. 
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3. TYPES AND SOURCES OF UNCERTAINTY When determining the uncertainties in a material property, 
it is important to ensure that the data are consistent with 
the geological interpretation for the site, and that 
consistent data populations are used (Lacasse and 
Nadim, 1996). Important uncertainties have been 
introduced in the past because of inconsistent data sets. 
The inconsistency can originate from different soil and 
rock types, different stress conditions, different test 
methods, stress history, different codes of practice, 
testing errors or imprecision that are not reported, 
different interpretations of the data, sampling disturbance, 
etc. 

 
There are significant uncertainties in all the steps of any 
geohazard evaluation. These are related to the 
assessment of soil and/or rock properties and in situ 
stresses, pore pressure and temperature conditions, 
identification and quantification of the triggers, definition 
the relevant failure modes, and the estimation of the run-
out distance and other consequences of the slide. 
 
It is conceptually useful to classify the uncertainty in the 
mechanical soil/rock properties and load effects (e.g. 
design seismic acceleration coefficient) into two groups:  

4. TRIGGERING MECHANISMS FOR SLIDES  
 • Aleatory uncertainty represents the natural 

randomness of a variable. For example, the 
variation of the soil characteristics in the lateral 
direction is aleatory; the variation in the peak 
acceleration of an earthquake is aleatory. The 
aleatory uncertainty is also called the inherent 
uncertainty. Aleatory uncertainty cannot be re-
duced. 

The triggers for different slope failures can be natural, on-
going processes or human activities. A distinction can be 
made between stress (or load) increasing triggers 
bringing the stress conditions in the soil mass closer to 
failure, and strength decreasing triggers causing strength 
loss due to large strains and pore pressure changes. The 
most common triggers for onshore and offshore slope 
failures include:  
 • Epistemic uncertainty represents the uncertainty 

due to lack of knowledge on a variable. 
Epistemic uncertainty includes measurement 
uncertainty, statistical uncertainty (due to limited 
information), and model uncertainty. Epistemic 
uncertainty can be reduced, for example by 
increasing the number of tests or by improving 
the measurement method. 

• Human activities, in particular construction 
activities related to roads, tunnels, bridges, etc. 

• Extreme rainfall. 
• Earthquake activity causing short-term inertia 

forces and post-earthquake pore pressure 
increase and fault displacements. 

• Rapid deposition leading to excess pore 
pressure conditions, underconsolidation and 
increased shear stress level in a slope. 

 
Within a geological unit, the mechanical properties are 
affected by both aleatory and epistemic uncertainties. In 
some locations, the aleatory uncertainty is very small (e.g. 
the soil exhibits very little spatial variation of properties) 
and most of the uncertainty is due to lack of knowledge. In 
other locations, the natural scatter in the material 
properties is large and aleatory uncertainty is more 
important than epistemic uncertainty. Unfortunately it is 
not possible to establish a set of guidelines for the 
evaluation of the uncertainty in soil and rock properties 
that are valid for all sites.  

• Toe erosion or top deposition giving higher slope 
inclination and increased gravity forces and 
shear stress along potential failure surfaces. 

• Sensitive (contractive) and collapsible soils, 
which could lead to retrogressive sliding and 
increased spatial extent of failure zones. 

 
Probabilistic analyses of slope stability and quantitative 
assessment of geohazards require that the relevant 
triggering mechanisms and their induced load effects be 
described in probabilistic terms.  

The epistemic uncertainty can be statistical, 
measurement-related and/or model-related. Statistical 
uncertainty is due to lack of information such as limited 
number of observations.  Measurement uncertainty is due 
to, for example, imperfections of an instrument or of a 
method to register a quantity. Model uncertainty is due to 
idealizations made in the physical formulation of the 
problem. 

 
5. PROBABILISTIC SLOPE STABILITY EVALUATION 
 
Slope instability is the most common and serious type of 
geohazard. In its simplest form, the trigger is gravity and 
the calculation model is usually some sort of a limit 
equilibrium analysis. Even in this situation, where there is 
virtually no uncertainty in the intensity of the trigger, there 
are uncertain factors that affect the safety margin of a 
slope.  

 
Statistical uncertainty is present because the parameters 
are estimated from a limited set of data, and is affected by 
the type of estimation technique used. Measurement 
uncertainty is described in terms of accuracy and is 
affected by bias (systematic error) and by precision 
(random error).  It can be evaluated from data provided by 
the manufacturer, laboratory tests and/or scaled tests. 
Model uncertainty is defined as the ratio of the actual 
quantity to the quantity predicted by a model.  

 
The first-order, second-moment (FOSM) approach 
provides approximations for the mean and standard 
deviation of safety margin only. The FOSM approximation 
suffers from a lack of invariance, where different, but 
equivalent, definitions of safety margin may lead to 
different estimates of failure probability.  
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Monte Carlo simulation is another powerful technique that 
may be used to estimate the probability of slope 
instability. The Monte Carlo simulation is implemented in 
some commercial slope stability analysis packages. How-
ever, when the probability of failure is very small, the 
procedure is very time-consuming. 

The higher the reliability index β computed from Eq. 2, the 
smaller the probability of failure. The square of the 
direction cosines or sensitivity factors (αi

22), whose sum is 
equal to unity, quantifies in a relative manner the 
contribution of the uncertainty in each random variable Xi 
to the total uncertainty.  

The higher the reliability index β computed from Eq. 2, the 
smaller the probability of failure. The square of the 
direction cosines or sensitivity factors (αi ), whose sum is 
equal to unity, quantifies in a relative manner the 
contribution of the uncertainty in each random variable Xi 
to the total uncertainty.  

   
Nadim and Lacasse (1999) described a probabilistic slope 
stability analysis based on the first- and second-order 
reliability methods (FORM and SORM, Hasofer and Lind 
1974) and the generalized method of slices. In FORM or 
SORM, a performance function g(X), is defined such that 
g(X) ≥ 0 means that the slope is stable and g(X) < 0 
means that the slope has failed. X is a vector of basic 
random variables including soil properties, load effects, 
geometry parameters and modeling uncertainty. If the 
joint probability density function Fx(X) is known, then the 
probability of failure Pf is given by 
 

Pf  = ∫L F x(X)dX     [1] in th
 

Nadim and Lacasse (1999) presented an example of 
probabilistic slope stability evaluation with FORM, see 
Figure 2. The deterministic analysis gave a safety factor 
(FS) of 2.10 for slip surface 1 (critical slip surface from 
deterministic analysis) and 2.67 for slip surface 2. The 
probability of failure was however 8 times higher for slip 
surface 2 than for slip surface 1. In other words, the 
analysis indicated that the slip surface with the lowest 
deterministic safety factor (FS = 2.10) is 8 times less likely 
to fail than the critical probabilistic slip surface with a 
higher safety factor (FS = 2.67). The inconsistency is due 
to the effects of the uncertainties in the input parameters 

e analyses. 

Nadim and Lacasse (1999) presented an example of 
probabilistic slope stability evaluation with FORM, see 
Figure 2. The deterministic analysis gave a safety factor 
(FS) of 2.10 for slip surface 1 (critical slip surface from 
deterministic analysis) and 2.67 for slip surface 2. The 
probability of failure was however 8 times higher for slip 
surface 2 than for slip surface 1. In other words, the 
analysis indicated that the slip surface with the lowest 
deterministic safety factor (FS = 2.10) is 8 times less likely 
to fail than the critical probabilistic slip surface with a 
higher safety factor (FS = 2.67). The inconsistency is due 
to the effects of the uncertainties in the input parameters 
in the analyses. 
  

 

where L is the domain of X where g(X) < 0. 
 
In general the above integral cannot be solved 
analytically, and an approximation is obtained by the 
FORM approach. In this approach, the general case is 
approximated to an ideal situation where X is a vector of 
independent Gaussian variables with zero mean and unit 
standard deviation, and where g(X) is a linear function. 
The probability of failure Pf is then:  

egral cannot be solved 
analytically, and an approximation is obtained by the 
FORM approach. In this approach, the general case is 
approximated to an ideal situation where X is a vector of 
independent Gaussian variables with zero mean and unit 
standard deviation, and where g(X) is a linear function. 
The probability of failure Pf is then:  

Pf  =  P (g(X) < 0) = P ( α∑
=

n

i 1
∑

=

n

i 1
iXi –  β < 0) = Φ (-β) [2] Pf  =  P (g(X) < 0) = P ( αiXi –  β < 0) = Φ (-β) [2] 

where αi is the direction cosine of random variable Xi, β is 
the distance between the origin and the hyperplane g(X) = 
0, n is the number of basic random variables X, and  Φ is 
the standard normal distribution function. 

where αi is the direction cosine of random variable Xi, β is 
the distance between the origin and the hyperplane g(X) = 
0, n is the number of basic random variables X, and  Φ is 
the standard normal distribution function.    Figure 2.   Example slope considered by Nadim and 

Lacasse (1999) The vector of the direction cosines of the random 
variables (αi) is called the vector of sensitivity factors, and 
the distance β is called the reliability index. 

The vector of the direction cosines of the random 
variables (αi) is called the vector of sensitivity factors, and 
the distance β is called the reliability index. 
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This example clearly shows that the factor of safety is not 
a sufficient indicator of safety margin because the 
uncertainties in the analysis parameters affect the 
probability of failure, while they do not intervene in the 
conventional calculation of safety factor. The flatter dis-
tribution of the factor of safety in Figure 3 reflects greater 
uncertainty and will result in a greater probability of failure 
(area under the curve where FS < 1). 
 
6. ESTIMATION OF THE ANNUAL PROBABILITY OF 

FAILURE 
 
The annual probability of slope failure may be estimated 
from the geological evidence, e.g. observed slide 
frequency, geological history, geophysical investigations, 
and radiocarbon dating of sediments; and/or analytical 
simulations like the FORM/SORM approach mentioned 
above. Ideally, both approaches should be employed.  
 
If the trigger for inducing a slide is identified, the annual 
probability of slope instability can be established by 
evaluating the conditional probability of failure for different 
return periods of the trigger. The conditional probabilities 
are then integrated over all return periods to obtain the 
unconditional failure probability. Calculation can be 
simplified by using the approximation suggested by 
Cornell (1996) or a similar approach.  
 
When the triggering mechanism is not obvious, the 
probabilistic slope stability calculations provide an 
estimate of failure probability for static conditions. In this 
situation, it is not straightforward to relate the calculated 
"timeless" failure probability to a failure frequency. Nadim 
(2002) and Nadim et al. (2003) developed several ideas 
for quantifying the annual probability of slope instability: 
 

• Bayesian approach with Bernoulli sequence 
• Statistical model for failure frequency 
• Availability problem - Markov chain 
• Interpretation of the static failure probability as 

the instantaneous hazard function  
• Bayesian interpretation of static failure 

probability 
 
The first two approaches are purely statistical and do not 
involve any geotechnical calculations. Their input is the 
frequency of slide events (or lack thereof), which may be 
based on observations or inferred from geological 
evidence, for example dating of slide sediments. The third 
approach combines the calculated probability of static 
slope failure with the slide frequency estimated from the 
geological evidence. The last two approaches are mainly 
based on the calculated probability of static failure. 
 
6.1 Bayesian approach with Bernoulli sequence 
 
The Bayesian approach is a powerful method (e.g. 
Folayan et al. 1970). The annual probability of slide 
release could be anywhere between zero and one if no 
information is available about the slope and there are no 
recorded observations (diffuse prior). If, after "n" years of 
observation, sliding activity is observed in "r" years, then 

the (posterior) annual probability of slide occurrence can 
be obtained by the Bayesian approach (Ang and Tang 
1984). This model considers the annual failure of a given 
slope as a Bernoulli sequence. The status of the slope 
during a one-year interval is seen as a trial with two 
possible outcomes: failure or non-failure. The approach 
makes the following assumptions: 
 

1. Each trial has only two possible outcomes: the 
occurrence or non-occurrence of sliding. 

2. The probability of occurrence of sliding in each 
trial is constant.  

3. The trials are statistically independent. 
 
Assumptions 1 and 3 are reasonable, but the validity of 
assumption 2 is arguable. 
 
Figure 4 shows the distribution of annual failure 
probability estimated by this approach for slopes having 
not failed during 1, 3, and 8 years of observation. 
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Figure 4   Distribution of annual failure probability of a 
slope having not failed during several years of 

observation. 
 
 
6.2 Statistical model for failure frequency 
 
This statistical model considers the sliding activity as a 
Poisson process, with the following assumptions (Ang and 
Tang 1984): 
 

1. Sliding can occur at random and at any time or 
any point in space. 

2. The occurrence(s) of a slide in a given time (or 
space) interval is independent of that in any 
other non-overlapping intervals. 

3. The probability of slide occurrence in a small 
time interval is proportional to the time interval, 
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the mean rate of slide occurrence is constant 
and the probability of two or more occurrences in 
the time interval is negligible. 

 
A concept that is useful for the interpretation of FORM 
results and the estimation of annual Pf is the hazard 
function (Melchers 1999). The hazard function (also called 
‘age specific failure rate’ or ‘conditional failure rate’) 
expresses the likelihood of failure in the time interval t to 
t+dt as dt approaches 0, given that failure has not 
occurred prior to time t: 

 
The number of slide occurrences in a time interval is 
given by the Poisson distribution. In this model, 
assumptions 2 and 3 are believed to be justifiable, but 
assumption 1 is an oversimplification. 

  
 h ( ) ( )ttopriorfailurenodttandtbetweenfailurePtT +=On the basis of these assumptions, the number of slide 

occurrences in the time interval t is given by the Poisson 
distribution. The mean occurrence rate for the Poisson 
process could be estimated from dating of slide 
sediments, or other geological evidence. 

 
 
More rigorously, 
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   [3]  
6.3 Availability problem – Markov chain model  
 

 The assumption of stochastic independence is a 
fundamental assumption in the above Bernoulli trials and 
Poisson-process models. In many applications, however, 
significant dependence exists between the successive 
trials or years or steps that can be identified in a physical 
process. This means that the transition of a system from 
one state to another may generally depend on the prior 
states of the system. If the transition probability depends 
only on the current state, the process of change is called 
a Markov chain.  

One approach to estimate the annual failure probability is 
to interpret the failure probability computed with FORM as 
the cumulative distribution function value at the present 
time (the present being time “t” after the last failure). 
Thus, by assuming the shape of the hazard function, 
knowing (or estimating) the time of the last failure, and 
manipulating the hazard function equations, one can 
obtain the value of the hazard function at the present 
time.  Since the hazard function is a conditional density 
function, its value at the present time is the probability 
density given that no failure has occurred up to this point.  
The annual probability of failure can be obtained by 
simply integrating the hazard function over the next year.   

 
Nadim (2002) presents a model for combining the 
“timeless” probability of failure computed from a 
probabilistic slope stability evaluation with the slide 
frequency estimated from geological evidence to obtain a 
better estimate of the annual failure probability. The 
model considers the stability of the slope as an 
“availability problem” with two states: safe and failed. The 
availability problem is a classical application of the 
Markov chain model. In most typical situations, this model 
predicts an annual failure probability that is very close to 
the slide frequency estimated from geological evidence. 

 
Nadim et al. (2003) applied this approach to a submarine 
slope in the Gulf of Mexico which had a computed static 
safety factor of about 1.5 and a computed probability of 
static failure of Pf = 4.2⋅10-4. Depending on assumptions 
made for the hazard function, the result was an annual 
failure probability in the range of 10-6 to 10-8. 
 
6.5 Interpretation of computed static failure probability 

in a Bayesian framework 
 
6.4 Interpretation of computed static failure probability 

as the instantaneous hazard function  
An alternative interpretation of the failure probabilities 
computed with FORM is more consistent with the theory 
behind the FORM analysis, but it also requires a number 
of assumptions (Nadim et al. 2003) 

 
The FORM analysis (or a similar approach) takes into 
account uncertainties within the system to provide an 
estimate of the probability that a system, if “built” today, 
would fail immediately. This interpretation is straight-
forward for man-made slopes, for example dams and 
embankments. However, interpretation of the FORM 
results for stability of a natural slope is not 
straightforward. The slope of interest is standing today, so 
its probability of “static” failure is zero. Obviously, if there 
are no triggers or deterioration mechanisms present in the 
system, the slope that stands today would never fail. 

 
The fact that the slope is standing today implies that the 
current factor of safety, although unknown, is greater than 
one. Thus, the question of annual probability of failure 
becomes the question of the likelihood that the current 
factor of safety will fall below one during next year.  The 
current factor of safety is unknown, but its distribution can 
be computed (distribution from FORM analysis, but 
truncated to reflect the fact that the slope is stable today).  
This interpretation is basically a Bayesian updating 
procedure where the a-priori information is that FS ≥ 1. 
Formally, the updated (or posterior) distribution of the 
factor of safety is: 

 
Therefore, the probability of static failure provided by 
FORM analysis is not the annual probability of failure.  
However, the results of FORM analysis could still be used 
to estimate the annual failure probability. Two possible 
interpretations of FORM results that may be used to 
obtain the annual probability of failure are presented by 
Nadim et al. (2003).   )1(1

)1()(]1|[
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The slope will fail during the next year only if its current 
value of safety factor is such that, with the given rate of 
deterioration, it will fall below unity during one year. This 
very simple calculation can be performed in several 
slightly different ways. Using this approach for the same 
submarine slope mentioned in the previous section, 
Nadim et al. (2003) obtained annual failure probabilities in 
the range between 10-7 and 10-9 (depending on the 
assumptions made). 
 
It is clear that additional research is needed to formalize 
the interpretation of the annual failure probability on the 
basis of the “timeless” failure probability obtained by 
FORM, SORM, or a similar method. However, the 
alternative interpretations presented in sections 6.4 and 
6.5 both give annual failure probabilities that are several 
orders of magnitude lower than the “timeless” probability 
of failure computed by FORM. 
 
7. APPLICATION OF PROBABILISTIC METHODS IN 

HAZARD ZONATION 
 
In its simplest form, probabilistic landslide hazard zonation 
has three requirements: 
 

1. The “safe” and “unsafe” areas should be defined 
in a probabilistic framework. For example, areas 
where the annual probability of being affected by 
a landslide is less than 10-3 may be considered 
safe, while areas with a greater annual probability 
may be considered unsafe. 

2. A probabilistic/statistical model describing the 
annual probability of slide release. 

3. A probabilistic/statistical model describing the run-
out distance for the slides. 

 
This paper has focused on the second requirement, i.e. 
probabilistic models for slide release. The third requirement 
is far more complicated and the subject of on-going 
research at the highest technical level. 
 
An example of a probabilistic approach for slide and 
avalanche hazard zonation was presented by Harbitz et al. 
(2001). They used a mechanical probabilistic model for 
avalanche release in combination with a statistical-
topographical model for avalanche run-out distance to 
obtain the unconditional probability of extreme run-out 
distance.  
 
For the mechanical model, FORM and Monte Carlo 
simulations were compared for calculating the annual 
probability of avalanche release. The comparison showed 
that the FORM approximation gave results that were almost 
identical to the simulations.  
 
Harbitz et al. also discussed the interpretation of the 
statistical/topographical model for slide run-out as an 
extreme value model vs. a single value model. The 
ambiguous interpretation of the model reflects the need for 
more than one observation in a sufficient number of 
avalanche paths. They outlined how a “safe” run-out angle 

could be calculated based on each of the two approaches, 
and how a specified certainty level can be found by 
constructing confidence intervals based on the annual 
probability of slide/avalanche release. 
 
Example applications in hazard zoning were presented with 
emphasis on how the influence of historical observations, 
local climate, etc., on run-out distance can be quantified in 
statistical terms and how a specified certainty level can be 
found by constructing confidence intervals for e.g. the most 
likely largest run-out distance during different time intervals. 
Owing to the quantified uncertainty in the probability of 
extreme run-out distance, it is suggested to indicate the 
areas susceptible to avalanches by zones rather than 
demarcation lines only. 
 
8. CONCLUSIONS 
 
Probabilistic approaches are a necessary and useful com-
plement to conventional engineering analyses, as they pro-
vide important additional information on the effects of 
uncertainty on the response. To improve the basic under-
standing of geohazards and the ability to deal with the 
risks requires increased use of probabilistic methods. 
Probabilistic analyses of slope stability and estimation of 
the annual probability of slope failure are essential 
elements in the assessment of geohazards. The first re-
quirement in the application of reliability-based approach is 
a clear understanding of the mechanisms of the situation 
modeled and sound engineering judgment to help quantify 
the uncertainties. 
 
An example of slope stability calculation showed that the 
deterministic critical slip surface is not necessarily the one 
with highest probability of failure. Factor of safety is not a 
sufficient indicator of safety margin because the uncer-
tainties in the analysis parameters affect probability of 
failure, but not factor of safety. 
 
This paper suggests approaches to obtain the annual 
probability of failure for slopes, both where the trigger of 
the slide is clearly identified and where the triggering 
mechanism is not obvious. Suggestions for a framework 
to for hazard zonation mapping are also put forward. 
 
For slopes where the trigger for inducing a slide is 
identified, the annual probability of slope instability can be 
established by evaluating the conditional probability of 
failure for different return periods of the trigger. The 
conditional probabilities are then integrated over all return 
periods to obtain the unconditional failure probability. 
 
For slopes where the triggering mechanism for inducing a 
slide is not well-defined or uncertain, geological evidence 
and dating of previous slides are key parameters for 
estimating the annual failure probability. Five approaches 
are presented in the paper to estimate the annual 
probability of failure. In practice, the authors recommend 
that, depending on the data available for input in each of 
the approaches, as many as of the approaches as 
possible be applied in order to delimit a likely range of 
probability of failure. 
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