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ABSTRACT 
A framework is presented for quantitative estimation of the probability of geotechnical hazard events in mines. The 
hazard event may be of any type, such as fault-slip rockburst, strainburst, roof failure, slope failure, or flooding. The 
method requires models of the mine at points in time when past failures occurred, capturing the state of individual 
criteria on the rock interface where the geotechnical hazard is experienced. The series of time steps constitutes a 4D 
mine model to which expert system processes are applied to understand the evolution of hazard in response to the 
dynamic mine environment. A case study is shown from deep, rockbursting mines that exemplifies the method and 
demonstrates its practical application and value. 
 
RÉSUMÉ 
Un cadre est présenté afin d’estimer quantitativement de la probabilité d’occurrence d’accidents géotechniques 
dangereux dans les mines. Les dangers peuvent être de toutes sortes tels que les glissements de terrains, les coups ou 
les ruptures de toit et les inondations. La méthode nécessite des modèles de la mine aux moments précis où de tels 
accidents se sont produits, captant ainsi l’état de critères particuliers de l’interface rocheux où l’accident géotechnique 
est survenu. Des systèmes experts sont appliqués au modèle de mine 4D constitué d’une série de représentations 
temporelles des critères de l’interface rocheux afin de comprendre l’évolution des dangers en fonction de 
l’environnement dynamique de la mine. Une étude de cas de mines profondes où des coups de toits surviennent 
illustrent la méthode et démontrent son application pratique et sa valeur. 
 
 
 
1 INTRODUCTION 

 
The premise of this work is that zones of elevated 
groundfall hazard in an operating mine may be identified 
by quantitative combination of a number of observable or 
computable input variables. We demonstrate that hazard 
identification from combining multiple inputs is more 
effective than interpretation of any single input, and 
provides a useful result for experienced ground control 
engineers to interpret within the overall operational 
mining context. Neither spatial nor temporal prediction of 
actual groundfalls is presumed to be a reasonable 
expectation in a dynamic environment where the inputs 
exhibit both complex inter-relationships and substantial 
uncertainty. Nevertheless, proactive identification of 
groundfall hazard zones provides an opportunity for the 
operation to mitigate both safety risk and production 
disruption. This approach is similar to that taken in 
earthquake hazard assessment where the foundation of 
risk estimation is maps demarcating elevated seismic 
hazard zones on a relative scale, as opposed to 
predicting the occurrence of individual earthquakes. 
Computational assessment of groundfall hazard serves 
as a quantitative basis for the inclusion of geotechnical 
hazard estimation in mine planning and design.  
 
Xstrata’s Craig Mine near Sudbury, Ontario, experienced 
substantial production problems due to unexpectedly 
severe rockbursting conditions. The essence of this case 
study is to use available data sets describing the mine 
condition and history of rockbursting to retrospectively 
determine relative rockburst hazard as a function of 
multiple measurable criteria. The established hazard 

function may then be deployed prospectively to evaluate 
current or future hazard. It demonstrates by example a 
framework for 4D quantitative “back-analysis” of any type 
of geotechnical hazard. 

 
 

2 HAZARD ASSESSMENT STRATEGY 
 
We assume geotechnical hazard to be a computable 
spatial property that can be portrayed on a 3D model of 
mine development. Hazard is a property of mine 
development or other rock interface surfaces (e.g. drift 
walls, stope backs, shaft walls), not a property of the rock 
mass volume in which the mining takes place. This is 
because falls of ground occur at rock interfaces, no 
matter the underlying cause or the proximity of that cause 
within the 3D rock mass. A map of relative or absolute 
probability of ground failure at defined (x, y, z) locations 
on mine development surfaces we term a geohazmap, 
which may vary in time in response to dynamic mine 
conditions. 

The “hazard equation” for a given hazard type is 
assumed to be a complex function of many layers of input 
data, written generally as: 

 
 hazard (x, y, z, t) = 
 
 f (geology, rock quality, stress, seismicity,  

development, mining  method, other properties). 
Establishment of the time-dependent hazard function 

requires site-specific geotechnical reasoning and 
experimentation with case study data. Speculative 
relationships must be tested empirically, so an initial data 



 

 

compilation and analysis must be made. Although the 
case study described here focuses on a single hazard 
type, fault-slip induced rockbursting, the methodology 
presented is applicable to any type of ground failure. 

 
2.1 Methodology 
 
We have adapted our hazard estimation procedure from 
experience in mineral exploration targeting, which is a 
conceptually similar process in a different application. In 
both cases the general principle is to combine multiple 
data streams to determine spatial zones with desired 
statistical characteristics. The objective is to find (x, y, z) 
locations, otherwise difficult to discern, where certain 
special combinations of conditions exist. We use 
GOCAD™ 3D earth modelling software with a plug-in 
module called Targeting Workflow to guide the user 
through the required series of pre-processing, statistical 
analysis, and computational targeting steps. In the 
remainder of this paper we use the words “targets” or 
“targeting” to refer generically to the process of identifying 
zones within an earth model that satisfy certain criteria 
(such as enhanced groundfall hazard). 

A multi-disciplinary GOCAD “common earth model” 
(McGaughey, 2006) is created as the fundamental data 
support for the various types of data that are to serve as 
the hazard criteria. The hazard criteria data are modelled 
as continuous or classified variables on a triangulated 
“hazard surface” which, in this case, is specified to be the 
entire set of Craig Mine “Zones 10 and 11” development 
surfaces, including drifts, ramps, and stopes. Hazard 
criteria used here were a mixture of interpreted rock 
properties such as lithology, rock quality, and disking, 
along with other potential hazard indicators such as 
depth, stress, seismicity, and proximity to faults. “Target” 
hazard locations are identified, ranked, and classified by 
computing and analyzing a score at each location (vertex) 
on the surface. A quantitative, probabilistic approach is 
taken by the workflows to computation of the score 
function by allowing the user to select amongst: a) a 
knowledge-driven framework in which expert knowledge 
is used to manually classify, score, and weight individual 
criteria; b) a data-driven framework in which training data 
of known valid targets in the model are used to classify 
and weight the input criteria; and c) classifications and 
scores from other models of similar settings which may 
be imported for application to a new model area.  

The methods described here are inspired by a history 
of successful application in 2D GIS systems in mineral 
exploration going back to the 1980’s and 1990’s (see for 
example Bonham-Carter, 1994 and 1997), and more 
recent experimentation in 3D for exploration applications 
(Apel and Böhme, 2006; Caumon et al., 2006). The 
Bayesian weights-of-evidence algorithm deployed at the 
core of data-driven applications of Targeting Workflow is 
based on the work of Apel and Böhme (2006) and their 
“Predict” software. 

The Targeting Workflow software takes the user 
through a sequence of pre-processing, prediction 
modelling, and post-processing steps. It provides a 
number of statistical investigations of input data and 
target validation procedures, offering both knowledge-
driven and data-driven frameworks. Knowledge-driven 

expert-system approaches rely on expert users to convert 
opinions on the relevance of input data to the hazard 
estimation, based on experience, into numerical scores 
used in the combination of multiple data streams. 
Knowledge-driven systems do not require historical 
groundfall events for users to set weighting systems for 
the input data streams.  Data-driven systems use 
statistical methods to set weights for individual data 
streams depending on their correlation with historical 
groundfalls. They are thus “unbiased” but require 
construction of the site history. (Bias can still affect the 
process in a number of ways from selection and 
modelling of hazard criteria to interpretation of several 
statistical tests carried out by the workflow.) There are 
many algorithms within each of the knowledge-driven and 
data-driven approaches, of which only a few have been 
currently implemented in Targeting Workflow. At the 
highest level the workflow steps consist of: 

1. Select modelling approach: a) Boolean 
Overlay, b) Weighted Boolean Overlay, c) 
Multi-class Index Overlay, d) Weights-of-
evidence; 

2. Define model space and select hazard 
criteria properties; 

3. Select training data (known occurrences of 
groundfall); 

4. Re-classify, remove or combine individual 
hazard criteria properties if appropriate; 

5. Define individual criteria weights based on 
expert opinion (knowledge-driven) or training 
data (data-driven); 

6. Generate prediction model; 
7. Analysis and validation of prediction model; 
8. Hazard zone generation, classification, and 

ranking. 
 

The Targeting Workflow was deployed in this case 
study using a data-driven approach since a reasonably 
rich data set of historical groundfall was available. The 
data-driven approach used is “Weights-of-Evidence”, a 
well-established statistical method in 2D spatial targeting 
applications such as mineral exploration, environmental, 
and geotechnical. Other well-established data-driven 
approaches are logistic regression and probabilistic 
neural networks, which may be considered alternatives to 
the weights-of-evidence approach adopted here. 

 
 

3 CRAIG MINE CASE STUDY 
 
We applied a 4D weights-of-evidence back-analysis 
procedure to rockburst-induced fall of ground (FOG) 
hazard estimation at Craig Mine Zones 10 and 11. 
Weights-of-evidence provides a statistical assessment of 
the correlation between known occurrences of some 
condition (rockburst-induced falls of ground in this case) 
and multiple sets of measurable data. 

Geotechnical hazard analysis using 4D weights-of-
evidence was performed on two separate model areas at 
Craig mine: the ore zone and the footwall. They were 
treated separately because of a belief that the conceptual 
models for ore zone FOGs and footwall FOGs may differ. 
Locations of known groundfalls, used as training data, 



 

 

were divided into two subsets based on whether they 
were within the ore zone or footwall. The footwall model 
contained 8 known FOGs and the ore model contained 
11 known FOGs as listed in Table 1. The location of each 
FOG was represented as a vertex on the 3D mine model 
wireframe used for computing the hazard forecast. 
Because of location uncertainty, vertices within a 10 m 
buffer of the FOGs were also included as FOG locations. 

 

Timestamp

p 
Date of FOG Footwall Ore 

T1 Nov 6, 2003   

T2 March 4, 2004   

T3 June 3, 2004   

T4 August 19, 2004   

T4 August 29, 2004   

T5 Nov 30, 2004   

T6 July 7, 2005   

T6 July 24, 2005   

T7 Aug16, 2005   

T8 Oct 27, 2005   

T8 Oct 31, 2005   

T9 Apr 3, 2006   

T10 May 21, 2006   

T11 Sep 11, 2006   

T12 Jun 22, 2007   

T13 Dec 1, 2007   

T14 Mar 4, 2008   

T15 Apr 19, 2008   

T16 Dec 24, 2008   

Table 1. List of groundfall dates used as training data in 
the Craig mine hazard forecast, subdivided into footwall 
groundfalls and ore zone groundfalls. Each individual 
timestamp required a separate mine model to be 
constructed. Rockbursts occurring within the same month 
used the same mine model, under the assumption that 
dynamic modelled variables changed minimally. 

 

In order to carry out the weights-of-evidence statistical 
analysis, individually modelled hazard criteria were 
assigned to each vertex of the mine development 
wireframes, for each modelled snapshot in time. The time 
snapshots were chosen to correspond to the time of 
rockburst occurrences. If the location of a specific vertex 
(x, y, z, t) corresponded to the location of a rockburst, 
within the chosen 10 m buffer, that vertex would be 
flagged as a “training” point. The weights-of-evidence 
process then uses this data to build a statistical model 
that enables computation of the probability that any point 
in space and time on the mine infrastructure will 
experience a rockburst. 

Hazard criteria are defined as geotechnical factors 
that may be related to groundfall in the Craig Mine. 
Hazard criteria are represented in the GOCAD model as 

continuous or discrete variables on the mine development 
(Table 2). Some of these variables are static, for example 
rock code, disking and proximity to the orebody. Other 
variables are dynamic and therefore vary over time as 
new groundfalls are occurring, for example age of mine 
development, stress and microseismic event density. The 
list of variables used as hazard criteria was created 
initially through brainstorming with site personnel, and 
then refined in the modelling process. The mine 
infrastructure was modelled for dynamic variables at each 
of 16 different timestamps. Because separate models 
were constructed for the ore zone and footwall, a total of 
19 individual mine models were made. 

 

Static 

Properties: 
rock type 

core breaks 

core disking 

proximity to drift intersections 

proximity to fault terminations 

proximity to faults 

proximity to footwall contact 

proximity to hanging wall contact 

proximity to ore contact 

RQD 

infrastructure orientation (azimuth) 

proximity to high fault-slip tendency 

proximity to faults intersections 

ground support type 

mining method 

 

Dynamic 

Properties: 
microseismic event density 

average shear/compressional energy 

average seismic moment 

average static stress drop 

average local magnitude  

average apparent stress 

age of mine development 

Table 2. List of static and dynamic variables available as 

hazard criteria for the Weights-of-Evidence model. 

Conversion of raw geotechnical data to GOCAD hazard 
criteria is an important interpretational step. How raw data 
is ultimately represented in the model as hazard criteria 
must be defined by geotechnical experts. The process 
should be performed in such a way as to maximize the 
spatial correlation between patterns of the hazard criteria 
properties and locations of known groundfalls. This 
requires knowledge of the specific mine site as well as an 
understanding of how the data are captured and 
processed. For example, disking measurements from 
drillhole points in this study were run through a 3D 
geostatistical simulation to produce a continuous property 
on the hazard surface, microseismic point data were 
grouped into six month time windows upon which cluster 



 

 

density was computed, and fault slip tendency on fault 
segments were classified and represented as proximity 
properties.  
 
 
3.1 Modelling Results 
 
Continuous and discrete hazard criteria are converted to 
binary properties for our current implementation of the 
Weights-of-Evidence technique (there are alternative 
formulations that use multi-class or “fuzzy” class-
membership properties). Each geotechnical criteria is 
divided into two classes based upon a threshold or cut-off 
value that best separates regions of the hazard surface 
containing a large proportion of training data (i.e. have a 
history of groundfall) from those regions containing few or 
no training data (no groundfalls). The effectiveness of this 
binary classification in separating regions of hazard from 
non-hazard, per variable, is the essence of the statistical 
correlation test between the groundfall training data and 
the input hazard criteria. Positive and negative “weights” 
are computed for each criteria as a measure of the 
degree of correlation with the training data. Weights and 
contrast are determined by assessing the spatial 
correlation between training data (groundfalls) and the 
binary classes. The optimum cut-off or range for the 
binary property is determined by computing weights and 
contrast values for multiple binary representations of the 
same variable. Contrast is defined by the difference 
between the W+ and W- values. It is plotted as a function 
of binary cut-off in order to assess the cut-off level that 
maximizes the contrast (maximizing the spatial 
association between the hazard variable and the known 
groundfalls). If a peak or isolated anomalous value on a 
contrast curve plot is not obvious it indicates that there is 
little or no correlation between the location of known 
groundfalls and the anomalous pattern on the hazard 
criterion. If this occurs the variable is not used in the 
combination algorithm, as was the case for several 
properties in both the ore and footwall models at Craig 
Mine. Examples of contrast curves, binary properties 
showing favourable and unfavourable zones for a given 
criteria, and an output table of contrast weights for given 
criteria are shown in Figures 1-2 and Table 3. 
 

 

Figure 1. Example contrast curve plot for microseismic 
density with binary property cut-off value on the x-axis 
and contrast value for that cut-off on the y-axis. The peak 
of the Studentized contrast curve (red) indicates on the x-
axis the value at which microseismic event density 
evaluated on the mine development (approximately 0.07), 
the value above which rockbursts become relatively 
favourable. The microseismic event density scale is 
relative.  

 
 

 

Figure 2. Binary microseismic density property displayed 
on model area as points with a cut-off at 0.07. The parts 
of the mine infrastructure wireframe in red correspond to 
places (for this snapshot in time) where the relatively high 
microseismic event density (greater than 0.07) indicates 
elevated rockburst hazard. The microseismic event 
density map changes continuously in time as activity 
occurs. Blue diamonds show locations of ore zone FOGs.  



 

 

 

Hazard Criteria Weight 

proximity to ore contact  28.1 

disking  25.5 

core breaks  24.1 

RQD 20.2 

microseismic event density  17.2 

average seismic moment  15.5 

proximity to high fault slip  11.3 

drift orientation  9.5 

age of development  5.4 

proximity to fault intersections 5.4 

proximity to drift intersections  2.1 

Table 3. List of hazard criteria, for the footwall model, 
ordered by degree of correlation to the history of 
rockbursting. The “Weight” column is the Studentized 
contrast (difference between positive and negative 
weights normalized by standard deviation), a 
conventional measure of degree of correlation between 
the modelled criteria and the phenomenon, in this case 
the record of fault-slip induced rockbursts. Note that in 
this case, seismic event density, typically the variable 
most used to assess rockburst potential, is weighted as 
the fifth most important modelled criteria. 

 
For each time stamp of the mine model the relative 
hazard may be computed by combining computed 
weights for a list of criteria interpreted to be most relevant 
(Figure 3). 
 
4 CONCLUSIONS 

This project is the first we are aware of that formally 
combined a time history of mining and groundfall into a 
single computational 4D statistical analysis. Much of the 
project effort was dedicated to formulating a practical 
methodology to achieve this, and to the computer 
modelling required to implement it.  

The key conclusion is that the quantitative, statistical 
approach employed in this project for forecasting 
groundfall hazard related to fault-slip rockbursting was 
effective at Craig Mine Zones 10 and 11. The results are 
promising for the prospect of deploying an effective 
method of computing and displaying zones of elevated 
groundfall hazard within the project area studied. To the 
extent that other areas, whether at Craig Mine or 
elsewhere, experience groundfall hazard in an 
environment where the same conceptual model holds 
and the geotechnical environment is similar, the same 
type of groundfall hazard may be similarly assessed, 
using weights computed here. The hazard assessment 
strategy may also be used as a design tool for mine 
planning, so that geotechnical risk could be quantitatively 
included alongside other mine design criteria. 
 

 

Figure 3. Hazard forecast result mapped computed on 
the mine development surface at various time stamps for 
the footwall model. Actual rockburst locations are 
displayed as red spheres and indicated by arrows. 
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