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ABSTRACT 
Accurately characterizing the state of in situ stress in rock is important for the design of all underground engineering 
projects, but is crucial for safety‑critical projects such as deep geological repositories for nuclear waste. However, 
designers continue to be confronted with the challenging task of characterizing the significant variability and uncertainty 
found in the in situ stress state across the project volume, and particularly identifying separate stress domains. One routine 
approach is to partition, or group, stress data on the basis of depth below ground. In this paper we discuss a customary 
approach to identifying stress domains, and illustrate challenges in its application. We go on to present a novel approach 
that uses Bayesian linear segmented regression of Cartesian stress components to statistically characterize the variability 
and uncertainty in the depth of stress domain boundaries. Synthetic data are used to demonstrate the suitability and 
efficacy of this method, and it is then applied to stress measurements in crystalline rock obtained at the Forsmark site in 
Sweden. We conclude that use of a Bayesian approach is beneficial as it is able to formally augment stress measurement 
data with other valuable geological information. 
 
RÉSUMÉ 
Caractériser précisément l'état de contrainte in situ est important pour la conception d’infrastructures souterraines, d’autant 
plus pour des projets critiques au regard de leur sécurité, tels que le stockage géologique de déchets nucléaires. 
Cependant, la variabilité et l'incertitude importante associées aux contraintes in situ reste difficile à caractériser à l’échelle 
d’un site, nécessitant généralement l’identification de domaines de contrainte distincts. Une approche standard consiste à 
séparer, ou grouper, les données de contrainte selon la profondeur dans le sous-sol. Dans cet article, nous discutons 
d'une méthode classique permettant d’identifier des domaines de contrainte et illustrons les défis liés à son application. 
Nous présentons ensuite une nouvelle approche utilisant la régression segmentée linéaire bayésienne des composantes 
de contrainte cartésiennes pour caractériser statistiquement la variabilité et l'incertitude de la profondeur des limites des 
domaines de contrainte. Des données synthétiques sont utilisées pour démontrer la pertinence et l'efficacité de cette 
méthode, qui est ensuite appliquée aux mesures de contraintes obtenues en milieu cristallin sur le site de Forsmark en 
Suède. Nous concluons que l'utilisation d'une approche bayésienne est bénéfique car elle permet d’associer les données 
de mesure des contraintes avec d'autres informations géologiques précieuses. 
 
 
 
1 INTRODUCTION 

Characterization of the in situ stress state in rock is crucial 
for safety-critical projects such as deep geological 
repositories for safely accessible containment of nuclear 
waste. Extensive campaigns are often undertaken to obtain 
estimates of the in situ stress at various locations in the 3D 
space that comprises the entire project volume. However, 
such data lead to the challenging task of characterizing the 
significant variability and uncertainty in the in situ stress 
state, made more difficult due to the lack of robust and 
universally agreed methods for characterization of in situ 
stress. 

Partitioning stress data into distinct depth-wise 
horizons is a commonly adopted approach, although there 
is no well‑established heuristics for this. Further, the 
variability and uncertainty associated with estimates of the 

interface depths of these horizons (stress domains) is often 
ignored. 

In this paper we highlight a few of the challenges in 
identifying the depth stress domains and present a method 
that can potentially characterize the variability and 
uncertainty in depth estimates of these stress domain 
boundaries. We examine a novel application of Bayesian 
linear segmented regression firstly using synthetic stress 
data and then applying the method to over 100 overcoring 
stress measurements obtained at the Forsmark site in 
Sweden. The results are presented and discussed, and 
challenges in objectively identifying depth stress domains 
and characterizing the variability and uncertainty in their 
boundaries are highlighted. 



 

2 BACKGROUND 

The in situ stress state at the Forsmark site has been 
partitioned (Martin, 2007) into four depth‑wise domains of 
0‒150 m, 150‒300 m, 300‒400 m and 400‒1000 m on the 
basis of two parameters: one third of the first invariant, I1/3, 
and the ratio of major and intermediate principal stress, 
σ1/σ2. Smoothed parameter values were obtained by taking 
the moving median of six measurements. 

One shortcoming of this approach is that the results are 
sensitive to both the number and continuity of the 
measurements used in the smoothing. To demonstrate this 
we first replicate Martin (2007) analysis using sample size 
of 6, and then perform the analysis using sample sizes of 
10, 15, and 20 (Figure 1). As expected, the smoothing 
becomes more pronounced with increasing number of 
samples. On the basis of these profiles it could be argued 
that there exist two stress domain boundaries at depths of 
approximately 80 m and 170 m, but the results are not 
unequivocal. A more pronounced boundary is seen at 
about 300 m depth, but we believe that this could be a 
result of the lack of stress measurements between 
300 to 400 m. Another, and more serious, drawback to this 
analysis is the use of the first invariant of stress. This scalar 
measure ignores the principal stress orientations (Gao & 
Harrison, 2018a) and can thus wrongly identify quite 
different stress states (in terms of principal stress 
orientations) as being equivalent. These two 
disadvantages indicate that an improved technique is 
required for identifying stress domains. Furthermore, it is 
highly unlikely that such crisp or hard stress domain 
boundaries will exist in any geological environment: it is 
almost always the case such domain boundaries exhibit 
considerable uncertainty due to the various geological 
processes. 

Recently, Bayesian linear regression of Cartesian 
stress components has been proposed as a technique for 
obtaining mean stress estimates from posterior 
distributions (Javaid et al., 2022a, 2022b). These authors 
demonstrated the efficacy of the technique by analysing 
over 100 overcoring stress measurements obtained at the 
Forsmark site. Here, we introduce a Bayesian linear 
segmented regression method that can improve the 
predicted mean stresses together with quantifying the 
variability and uncertainty associated with depths 
(boundaries) of the depth stress domains. 

3 METHODOLOGY 

In this section the multivariate (MV) stress model, the 
generalized MV Bayesian stress model and previously 
proposed Bayesian linear regression model for stress are 
first explained, and then the method of analysis used in the 
current studies is introduced. 

3.1 Bayesian linear regression model 

A multivariate model for quantifying the variability of in situ 
stress has recently been proposed (Gao & Harrison 2016, 
2017, 2018a, 2018b). This model is faithful to the tensorial 
nature of stress, but has limited application in practical rock 
engineering due to it having a frequentist basis and thus 

requiring a large number of in situ stress measurements. 
To overcome this shortcoming, Feng & Harrison (2019) 
and Feng et al. (2020, 2021) proposed a generalized MV 
Bayesian stress model for use in the case of limited data. 

The Bayesian stress model assumes that the six 
distinct components of a complete 3D stress tensor 
obtained via stress measurement, Ydata, follow a 
multivariate normal distribution so that 

Ydata ~ MVN(µ, Ω), [1] 

where 

Ydata = [σx τxy τxz σy τyz σz] [2] 

with the prior distributions 

µ ~ MVN(µ0, Ω0) and Ω-1 ~ Wishart(S, 𝜈). [3] 

As Equation 3 shows, the prior distributions µ and Ω have 
their own parameters, µ0, Ω0, S, and 𝜈; these are the mean 

Figure 1. Moving median analysis of Forsmark data using 
four different sample sizes. Depth boundaries of stress 
domains from Martin (2007) are shown in dashed lines. 

 
 



 

stress vector, the covariance matrix, the Wishart 
distribution scale matrix and the number of degrees of 
freedom, respectively. 

Following the development of this generalized MV 
Bayesian stress model, Javaid et al. (2022a, 2022b) 
proposed a Bayesian linear regression model for 
estimating the mean stress vectors as: 

Yij ~ Normal(µij, ωj), [4] 

where 

µij = β0j + β, [5] 

with 

β0j = [β0[1] β0[2] β0[3] β0[4] β0[5] β0[6]]T 

   = [β0[σx] β0[τxy] β0[τxz] β0[σy] β0[τyz] β0[σz]]T, 
[6] 

and 

βj = [β[σx] β[τxy] β[τxz] β[σy] β[τyz] β[σz]]j
T. [7] 

As Equations 5–7 show, the Cartesian stress components 
are regarded as independent response variables, with the 
explanatory variable being depth below ground surface. 
Therefore, ωj in Equation 4 are the estimates of standard 
deviations for all individual response variables. The terms 
in Equation 6 represent the value of the stress components 
at the ground surface, with those in Equation 7 
representing the rate of increase of these with respect to 
depth. We assume σz = τyz = τzx = 0 at the ground surface, 
with the result that β0[σz] = β0[τyz] = β0[τzx] = 0. The number of 
individually regressed variables and regression 
parameters for a complete 3D stress tensor are thus six 
and nine respectively. 

3.2 Bayesian linear segmented regression 

The Bayesian linear segmented regression allows us to 
obtain distributions of the breakpoints between adjacent 
segments. Here, the breakpoints represent stress domain 
boundaries and as already noted there is considerable 
uncertainty in the depths of these. By statistical convention, 
the linear segmented or piecewise regression model is 
written using a dummy or indicator variable function (e.g. 
Young 2017). However, the general linear segmented 
regression model can be explained more conveniently as 
in the following algorithm given as Equation 8. 

 

[8] 

Here, Ψ is the depth of the stress domain boundary and 
ε is the error in predictive estimates obtained from 
regression. The model presented in Equation 8 can be 
expanded to include more breakpoints by including the 
desired number of Ψ terms. In the Bayesian context 
(Brilleman et al. 2017, Gelman & Hill 2007), regression 
coefficients (β0, β1) and all the breakpoints (Ψi) follow their 
own distributions rather taking fixed point estimates of 
centrality or some other statistical characteristic position. 

3.3 Our analyses 

To test the suitability and efficacy of the Bayesian linear 
segmented regression method, we have first applied the 
method to synthetically generated stress data that contains 
a distinct stress domain boundary at a depth of 100 m. The 
synthetically generated stress data are shown in Figure 2. 
These data were generated using tensorial method 
(Gao & Harrison 2017) by specifying a covariance matrix 
with very little dispersion and drawing random samples 
from the MVN distribution of Equation 1. The gradient 
discontinuity shown in these data could be explained by 
several plausible geological processes due to locked-in or 
residual stresses (Zang & Stephansson 2010) arising from 
removal of ice loading after glacial retreat. The figure 
shows only σx, σy and τxy, because the components σz, τyz 
and τzx are considered to have uniform gradients across the 

Figure 2. Posterior estimates of mean stresses and stress domain boundary from Bayesian linear segmented regression on 
synthetic stress data 



 

depth of interest and thus no gradient discontinuities are 
anticipated. 

Bayesian linear segmented regression estimates the 
posterior distributions of the regression coefficients using 
the model presented in Equations 4–7. We assume that the 
regression coefficients and the depth of the stress domain 
boundary all follow normal distributions. We have used 
uninformative priors on the regression coefficients, and an 
informative prior on the stress domain boundary with a 
mean depth of 100 m and a standard deviation of 10 m. 
The priors are thus 

β0j ~ Normal(0, 100),    β1j ~ Normal(0, 100), 
β2j ~ Normal(0, 100),    Ψ ~ Normal(100, 10). 

[9] 

Discussion on Figure 2 is presented in the following 
section. 

A further analysis was performed using 114 overcoring 
stress measurements obtained at the Forsmark site in 
Sweden. As noted earlier, the suggestion has been made 
that there are stress domain boundaries at depths of 150 m 
and 300 m (Martin 2007). 

The Bayesian linear segmented regression uses the 
uninformative priors on the regression coefficients 
provided in Equation 9 together with informative priors of 

Ψ1 ~ Normal(150, 20), and 
Ψ2 ~ Normal(300, 20). 

[10] 

on the two depth stress domain boundaries. 

4 RESULTS AND DISCUSSION 

For the analysis of synthetic stress data, the Bayesian 
posterior estimates of mean stresses for σx, σy and τxy are 

shown in Figure 2 with the relative frequency plot for the 
depth stress domain boundary being given in Figure 3. 
Figure 2 shows the posterior mean and 
95% Credible Interval (CI) of (a) the mean stresses σx, σy 
and τxy, and (b) the depth stress domain boundary. As 
these data were generated using distributions with small 
variance, the 95% CI for both the mean stresses and the 
depth stress domain boundary are relatively narrow. The 
posterior mean of the depth stress boundary is 100.2 m, 
which is almost equal to the specified value of 100.0 m. 
The 95% CI for the depth of this boundary is even smaller 
than the standard deviation used in priors (Equation 9), i.e. 
<10 m, as shown in Figure 3. 

The results from the analysis of the actual Forsmark 
overcoring stress measurements are provided in Figure 4 
and Figure 5. These two plots indicate that the analysis has 
produced meaningful estimates of both the variation of the 

Figure 3. Plot of relative frequency for uncertain domain 
boundary in synthetic stress data 

 
 

Figure 4. Posterior estimates of mean stresses and stress domain boundary from Bayesian linear segmented regression on 
Forsmark overcoring stress measurements 

 
 



 

stress magnitude with depth and the locations of the stress 
boundaries. It is noteworthy that the large variability in the 
data has propagated into correspondingly large 95% CIs 
for all the estimates. 

The posterior means of the upper (Ψ1) and the 
lower (Ψ2) depth stress boundaries are 117.6 m and 
316.5 m respectively, which need to be compared to the 
earlier deterministic estimates of 150 m and 300 m 
(Martin 2007), respectively. Although these estimates 
appear to be incompatible, it should be noted from Figure 5 
that the deterministic estimates fall within the 95% CI for 
both the upper and lower stress domain boundary ranges.  

This analysis of the Forsmark overcoring stress data 
demonstrates how deterministic depth estimates of stress 
domain boundaries can be misleading. However, the 
Bayesian linear segmented regression generates 
distributions of likely boundary positions, and these could 
be used in rock engineering design analysis to fully account 
for uncertainty in their location. This is particularly 
important for the design of sensitive projects such as 
underground nuclear waste repositories. 

5 CONCLUSIONS 

Partitioning in situ stress data into domains based on depth 
below ground surface is a common procedure in rock 
engineering, but there is a lack of robust and universally 
agreed methods to carry out this task. This paper highlights 
some challenges inherent to the task of characterizing 
variability and uncertainty in the position of such stress 
domain boundaries. 

Moving median analyses to identify domain boundaries 
appear to be sensitive to the size interval selected and thus 
these types of analyses involve some element of 
subjectivity. Moreover, a lack of stress measurements in 
any depth range can produce steps in moving median 
profiles that may falsely be identified as stress domain 
boundaries. 

To overcome the deficiencies associated with moving 
median analyses we have demonstrated the application of 
Bayesian linear segmented regression to two datasets: the 
first comprising synthetically generated stress data and the 
second actual overcoring stress measurements from the 
Forsmark site in Sweden. 

The synthetic stress data were generated to show two 
sharply distinct depth stress domains based on different 
gradients of three Cartesian stress components. The 
analysis correctly identified the domain boundary, returning 
values of posterior mean depth and posterior stress 
gradients very close to the values used in the data 
generation. Similarly, the 95% CIs of these parameters 
were very small, indicating confidence in the mean values. 

Application of the method to the Forsmark overcoring 
stress data produced large 95% CIs for both the depth of 
the domain boundaries and the predicted mean stresses. 
This was expected, given the large scatter in the measured 
data. Regarding the depth of the domain boundaries, the 
analysis returned posterior mean estimates that differed 
notably from the mean values used in the priors. 
Nevertheless, the prior mean values – which were obtained 
using expert opinion – were contained within the 95% CIs 
of the boundary locations. 

Our analyses indicate that Bayesian linear segmented 
regression is efficacious and overcomes some of the 
challenges posed by other methods. However, the method 
requires prior knowledge of both mean locations of 
boundaries and variability of stress across domains. 
Examining how site-specific geological knowledge can be 
applied to this is a subject of our ongoing research. 
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